Siga o Olhar Digital no Google Discover
Pesquisadores estão desenvolvendo modelos de inteligência artificial (IA) para ajudar no diagnóstico de câncer, um campo que envolve a identificação de padrões em tecidos para detectar tumores e avaliar sua gravidade.
Ofertas
Por: R$ 37,92
Por: R$ 22,59
Por: R$ 59,95
Por: R$ 3.099,00
Por: R$ 3.324,00
Por: R$ 799,00
Por: R$ 241,44
Por: R$ 388,78
Por: R$ 2.159,00
Por: R$ 188,99
Por: R$ 45,00
Por: R$ 379,00
Por: R$ 1.239,90
Por: R$ 943,20
Por: R$ 798,99
Por: R$ 200,29
Por: R$ 476,10
Por: R$ 1.139,05
Por: R$ 949,00
Por: R$ 155,44
Por: R$ 119,90
Por: R$ 398,99
Por: R$ 79,90
Por: R$ 199,90
A IA tem se mostrado promissora nessa área, especialmente no reconhecimento de imagens, e os pesquisadores acreditam que ela pode acelerar o processo diagnóstico e até detectar algo que humanos possam ter perdido.
Um modelo recente, chamado Atlas, desenvolvido pela Aignostics em parceria com a Clínica Mayo, foi treinado com 1,2 milhão de amostras de tecido e comparado a outros modelos líderes, vencendo seis de nove testes.
Leia mais:
- 5 tratamentos inovadores contra câncer que você precisa conhecer
- Como funciona mapeamento genético gratuito para descobrir câncer?
- Câncer: EUA querem rótulos com aviso de risco de doença em bebidas alcoólicas

Embora os resultados sejam promissores, o Atlas ainda não está pronto para uso clínico, apresentando desempenho variável entre os tipos de câncer, com 97,1% de precisão em câncer colorretal, mas apenas 70,5% em câncer de próstata. O estudo sobre o modelo foi publicado na arXiv.
Obstáculos que ainda precisam ser superados
- A IA precisa de um grande volume de dados para ser eficaz, mas a digitalização de amostras de tecido é limitada.
- Menos de 10% das práticas de patologia nos EUA são digitalizadas, dificultando o treinamento de modelos com uma gama ampla de exemplos.
- A Clínica Mayo tem digitalizado suas amostras de patologia para contornar esse problema, coletando milhões de imagens para melhorar os modelos.
- Além disso, as imagens de tecidos de biópsias são extremamente grandes e complexas, o que aumenta os custos e dificulta a análise.
- Outra dificuldade está em identificar quais características moleculares dos tecidos são mais importantes para o diagnóstico, um desafio que os modelos de IA ainda não superaram completamente.
Apesar dos avanços, os especialistas apontam que os modelos de IA ainda não são perfeitos e que mais dados e inovações são necessários para alcançar uma detecção precisa em nível clínico.
A IA está fazendo progresso, mas os desafios relacionados a dados, processamento e análise molecular ainda precisam ser resolvidos antes que esses sistemas possam ser amplamente aplicados na prática clínica.
